Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
PeerJ ; 12: e17219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650645

RESUMO

Abiotic stress caused by soil salinization remains a major global challenge that threatens and severely impacts crop growth, causing yield reduction worldwide. In this study, we aim to investigate the damage of salt stress on the leaf physiology of two varieties of rice (Huanghuazhan, HHZ, and Xiangliangyou900, XLY900) and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress. Rice leaves were sprayed with 5.0 µmol·L-1 Hemin or 25.0 µmol·L-1 ZnPP (Zinc protoporphyrin IX) at the three leaf and one heart stage, followed by an imposed salt stress treatment regime (50.0 mmol·L-1 sodium chloride (NaCl)). The findings revealed that NaCl stress increased antioxidant enzymes activities and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the two varieties. However, spraying with Hemin increased the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt stress.


Assuntos
Antioxidantes , Glutationa , Hemina , Oryza , Estresse Salino , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Hemina/farmacologia , Antioxidantes/metabolismo , Estresse Salino/efeitos dos fármacos , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Cloreto de Sódio/farmacologia , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
2.
Metabolites ; 14(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535302

RESUMO

A large number of dead seedlings can occur in saline soils, which seriously affects the large-scale cultivation of rice. This study investigated the effects of plant growth regulators (PGRs) and nitrogen application on seedling growth and salt tolerance (Oryza sativa L.), which is of great significance for agricultural production practices. A conventional rice variety, "Huang Huazhan", was selected for this study. Non-salt stress treatments included 0% NaCl (CK treatment), CK + 0.05 g N/pot (N treatment), CK + 40 mg·L-1 5-aminolevulinic acid (5-ALA) (A treatment), and CK + 30 mg·L-1 diethylaminoethyl acetate (DTA-6) (D treatment). Salt stress treatments included 0.3% NaCl (S treatment), N + 0.3% NaCl (NS treatment), A + 0.3% NaCl (AS treatment), and D + 0.3% NaCl (DS treatment). When 3 leaves and 1 heart emerged from the soil, plants were sprayed with DTA-6 and 5-ALA, followed by the application of 0.3% NaCl (w/w) to the soil after 24 h. Seedling morphology and photosynthetic indices, as well as carbohydrate metabolism and key enzyme activities, were determined for each treatment. Our results showed that N, A, and D treatments promoted seedling growth, photosynthesis, carbohydrate levels, and the activities of key enzymes involved in carbon metabolism when compared to the CK treatment. The A treatment had the most significant effect, with increases in aboveground dry weight and net photosynthetic rates (Pn) ranging from 17.74% to 41.02% and 3.61% to 32.60%, respectively. Stomatal limiting values (Ls) significantly decreased from 19.17% to 43.02%. Salt stress significantly inhibited seedling growth. NS, AS, and DS treatments alleviated the morphological and physiological damage of salt stress on seedlings when compared to the S treatment. The AS treatment was the most effective in improving seedling morphology, promoting photosynthesis, increasing carbohydrate levels, and key enzyme activities. After AS treatment, increases in aboveground dry weight, net photosynthetic rate, soluble sugar content, total sucrose synthase, and amylase activities were 17.50% to 50.79%, 11.39% to 98.10%, 20.20% to 80.85%, 21.21% to 33.53%, and 22.17% to 34.19%, respectively, when compared to the S treatment. In summary, foliar sprays of 5-ALA, DTA-6, and additional nitrogen fertilizer enhanced rice seedling growth, increased photosynthesis, lowered Ls values, and improved seedling salt tolerance. Spraying two regulators, 5-ALA and DTA-6, quantitatively increased the effect of nitrogen fertilizer, with comparable effects on NaCl stress regulation. This study provides the basis for efficient agricultural production.

3.
BMC Genomics ; 25(1): 190, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369486

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common cause of chronic liver disease in children and adolescents, but its etiology remains largely unknown. Adrenarche is a critical phase for hormonal changes, and any disturbance during this period has been linked to metabolic disorders, including obesity and dyslipidemia. However, whether there is a causal linkage between adrenarche disturbance and the increasing prevalence of NAFLD in children remains unclear. RESULTS: Using the young female rat as a model, we found that the liver undergoes a transient slowdown period of growth along with the rise of adrenal-derived sex steroid precursors during adrenarche. Specifically blocking androgen actions across adrenarche phase using androgen receptor antagonist flutamide largely increased liver weight by 47.97% and caused marked fat deposition in liver, thus leading to severe NAFLD in young female rats. Conversely, further administrating nonaromatic dihydrotestosterone (DHT) into young female rats across adrenarche phase could effectively reduce liver fat deposition. But, administration of the aromatase inhibitor, formestane across adrenarche had minimal effects on hepatic de novo fatty acid synthesis and liver fat deposition, suggesting adrenal-derived sex steroid precursors exert their anti-NAFLD effects in young females by converting into active androgens rather than into active estrogens. Mechanistically, transcriptomic profiling and integrated data analysis revealed that active androgens converted from the adrenal sex steroid precursors prevent NAFLD in young females primarily by inactivating hepatic sterol regulatory element-binding transcription factor 1 (Srebf1) signaling. CONCLUSIONS: We firstly evidenced that adrenarche-accompanied rise of sex steroid precursors plays a predominant role in preventing the incidence of NAFLD in young females by converting into active androgens and inactivating hepatic Srebf1 signaling. Our novel finding provides new insights into the etiology of NAFLD and is crucial in developing effective prevention and management strategies for NAFLD in children.


Assuntos
Adrenarca , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Criança , Feminino , Humanos , Ratos , Androgênios , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Esteroides , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
4.
Theriogenology ; 215: 302-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128223

RESUMO

Neurokinin B (NKB), a peptide encoded by the tachykinin 3 (TAC3), is critical for reproduction in all studied species. However, its potential roles in birds are less clear. Using the female chicken (c-) as a model, we showed that cTAC3 is composed of five exons with a full-length cDNA of 787 bp, which was predicted to generate the mature NKB peptide containing 10 amino acids. Using cell-based luciferase reporter assays, we demonstrated that cNKB could effectively and specifically activate tachykinin receptor 3 (TACR3) in HEK293 cells, suggesting its physiological function is likely achieved via activating cTACR3 signaling. Notably, cTAC3 and cTACR3 were predominantly and abundantly expressed in the hypothalamus of hens and meanwhile the mRNA expression of cTAC3 was continuously increased during development, suggesting that NKB-TACR3 may emerge as important components of the neuroendocrine reproductive axis. In support, intraperitoneal injection of cNKB could significantly promote hypothalamic cGnRH-Ι, and pituitary cFSHß and cLHß expression in female chickens. Surprisingly, cTAC3 and cTACR3 were also expressed in the pituitary gland, and cNKB treatment significantly increased cLHß and cFSHß expression in cultured primary pituitary cells, suggesting cNKB can also act directly at the pituitary level to stimulate gonadotropin synthesis. Collectively, our results reveal that cNKB functionally regulate GnRH/gonadotropin synthesis in female chickens.


Assuntos
Galinhas , Gonadotropinas , Humanos , Feminino , Animais , Galinhas/genética , Galinhas/metabolismo , Células HEK293 , Neurocinina B/genética , Neurocinina B/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo
5.
BMC Plant Biol ; 23(1): 569, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968598

RESUMO

BACKGROUND: IBAK, as a plant growth regulator, has broad application prospects in improving crop resistance to abiotic stress. RESULTS: In this study, the regulation mechanism of IBAK on rice was revealed by physiology and transcriptomics by spraying 80 mg·L-1 IBAK solution on rice leaves at the early jointing stage under salt stress. The results showed that spraying IBAK solution on leaves under salt stress could significantly increase K+ content, decrease Na+ content, increase net photosynthetic rate (Pn), and increase the activity of catalase (CAT) and the contents of glutathione (GSH) and soluble protein in rice leaves. Using IBAK under salt stress increased the expression of plant hormone signal transduction pathway-related genes LOC4332548 and LOC4330957, which may help rice to more effectively sense and respond to plant hormone signals and enhance resistance to salt stress. In addition, the photosynthesis pathway-related genes LOC4339270, LOC4327150, and LOC4346326 were upregulated after using IBAK under salt stress, and the upregulation of these genes may be beneficial to improve the efficiency of photosynthesis and increase the photosynthetic capacity of rice. Regarding starch and sucrose metabolism pathway, spraying IBAK on leaves could promote the expression of sucrose synthesis-related gene LOC4347800 and increase the expression of starch synthesis-related genes LOC4330709 and LOC4343010 under salt stress. Finally, IBAK spraying resulted in the upregulation of multiple 50 S and 30 S ribosomal protein genes in the ribosome pathway, which may increase protein synthesis, help maintain cell function, and promote rice growth and development. CONCLUSION: The results of this study revealed the mechanism of IBAK mediating resistance to salt stress in rice.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo , Potássio/metabolismo , Butiratos/metabolismo , Estresse Salino/genética , Fotossíntese/genética , Amido/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834368

RESUMO

Increased glucocorticoid (GC) levels act as a master contributor to central obesity in estrogen-depleted females; however, what factors cause their increased GC production is unclear. Given (1) liver fibroblast growth factor 21 (FGF21) and GCs regulate each other's production in a feed-forward loop, and (2) circulating FGF21 and GCs are parallelly increased in menopausal women and ovariectomized mice, we thus hypothesized that elevation of hepatic FGF21 secretion causes increased GGs production in estrogen-depleted females. Using the ovariectomized mice as a model for menopausal women, we found that ovariectomy (OVX) increased circulating corticosterone levels, which in turn increased visceral adipose Hsd11b1 expression, thus causing visceral obesity in females. In contrast, liver-specific FGF21 knockout (FGF21 LKO) completely reversed OVX-induced high GCs and high visceral adipose Hsd11b1 expression, thus abrogating OVX-induced obesity in females. Even though FGF21 LKO failed to rescue OVX-induced dyslipidemia, hepatic steatosis, and insulin resistance. What's worse, FGF21 LKO even further exacerbated whole-body glucose metabolic dysfunction as evidenced by more impaired glucose and pyruvate tolerance and worsened insulin resistance. Mechanically, we found that FGF21 LKO reduced circulating insulin levels, thus causing the dissociation between decreased central obesity and the improvement of obesity-related metabolic syndromes in OVX mice. Collectively, our results suggest that liver FGF21 plays an essential role in mediating OVX-induced central obesity by promoting GC production. However, lack of liver FGF21 signaling reduces insulin production and in turn causes the dissociation between decreased central obesity and the improvement of obesity-related metabolic syndromes, highlighting a detrimental role for hepatic FGF21 signals in mediating the development of central obesity but a beneficial role in preventing metabolic abnormality from further exacerbation in estrogen-depleted females.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Humanos , Feminino , Camundongos , Animais , Corticosterona/metabolismo , Resistência à Insulina/genética , Obesidade Abdominal/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/complicações , Camundongos Knockout , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glucocorticoides/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Estrogênios/metabolismo , Ovariectomia/efeitos adversos , Dieta Hiperlipídica
7.
J Reprod Immunol ; 159: 104132, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591181

RESUMO

Active immunization against gonadotropin-releasing hormone (GnRH) inhibits animal reproduction and has become a friendly alternative to surgical castration, which has been reported to affect the proportion of thymic T cell subpopulations. The effects of active immunization against GnRH on T cell migration from the thymus to the periphery and T cell distribution in lymphoid tissues remain unclear. Here, we showed that active immunization against GnRH increased thymic size and weight, enlarged the number of thymocytes, and enhanced CD4+ recent thymic emigrants (RTEs) and CD8+ RTEs migration to the blood and spleen. Active immunization against GnRH had no significant effect on naïve CD4+, naïve CD8+, CD4+ memory/activated, or CD8+ memory/activated T cells. In addition, active immunization against GnRH increased the proportion of CD3+ T cells in the spleen and lymph nodes. The percentages of CD3+CD4+ and CD3+CD8+ T cells in the blood, spleen, and lymph nodes were not significantly affected by GnRH immunization. Overall, these results enhance our understanding of thymic T cell production, migration, and colonization in rat lymphoid tissues affected by GnRH immunization.


Assuntos
Linfócitos T CD8-Positivos , Timo , Masculino , Animais , Ratos , Tecido Linfoide , Vacinação , Hormônio Liberador de Gonadotropina
8.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108077

RESUMO

Inhibins suppress the FSH production in pituitary gonadotrope cells by robustly antagonizing activin signaling by competitively binding to activin type II receptors (ACTR II). The binding of inhibin A to ACTR II requires the presence of its co-receptor, namely, betaglycan. In humans, the critical binding site for betaglycan to inhibin A was identified on the inhibin α subunit. Through conservation analysis, we found that a core 13-amino-acid peptide sequence within the betaglycan-binding epitope on human inhibin α subunit is highly conserved across species. Based on the tandem sequence of such a conserved 13-amino-acid betaglycan-binding epitope (INHα13AA-T), we developed a novel inhibin vaccine and tested its efficacy in promoting female fertility using the female rat as a model. Compared with placebo-immunized controls, INHα13AA-T immunization induced a marked (p < 0.05) antibody generation, enhanced (p < 0.05) ovarian follicle development, and increased ovulation rate and litter sizes. Mechanistically, INHα13AA-T immunization promoted (p < 0.05) pituitary Fshb transcription and increased (p < 0.05) serum FSH and 17ß-estradiol concentrations. In summary, active immunization against INHα13AA-T potently increased FSH levels, ovarian follicle development, ovulation rate and litter sizes, thus causing super-fertility in females. Therefore, immunization against INHα13AA is a promising alternative to the conventional approach of multiple ovulation and super-fertility in mammals.


Assuntos
Ativinas , Inibinas , Ratos , Feminino , Humanos , Animais , Inibinas/metabolismo , Receptores de Ativinas , Peptídeos , Imunização , Vacinação , Hormônio Foliculoestimulante/farmacologia , Fertilidade , Aminoácidos , Mamíferos/metabolismo
9.
Sci Rep ; 13(1): 3497, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859499

RESUMO

It is widely known that salt stress restricts rice growth and productivity severely. However, little information is available regarding the stage of rice seedlings subjected to the Heme oxygenase 1 (HO-1) inducer, Hemin. This study aimed to investigate the effects of salt stress on two rice varieties (Huanghuazhan and Xiangliangyou 900) and the effect of Hemin in promoting photosynthesis, carbohydrate metabolism, and key enzymes under salt-stress conditions. At the stage of three leaves and one heart, Huanghuazhan (HHZ) and Xiangliangyou 900 (XLY900) were sprayed with 5 µmol·L-1 Hemin and then subjected to 50 mM NaCl stress. The results showed that NaCl stress decreased the contents of chlorophyll a, chlorophyll b, and carotenoids. Furthermore, the net photosynthetic rate (Pn) decreased remarkably and the starch content was also lowered. However, NaCl treatment enhanced the concentration of sucrose and soluble sugar, simultaneously enhancing the sucrose metabolism. Nevertheless, the foliar spraying of exogenous Hemin mediated the increase in fructose and starch content, along with the activities of key enzymes' soluble acid invertase (SAInv), basic/neutral invertase (A/N-Inv), and sucrose synthase (SS) in rice leaves under NaCl stress. The sucrose phosphate synthase (SPS) in leaves decreased significantly, and the fructose accumulation in leaves increased. Hemin also mediated the increase of starch content and the α-amylase, total amylase, and starch phosphorylase (SP) activities under NaCl stress. Under stress conditions, the application of the Heme oxygenase 1 (HO-1) inhibitor, ZnPP failed to alleviate the damage to rice seedlings by NaCl stress. The ZnPP treatment showed similar tendency to the NaCl treatment on pigment content, gas exchange parameters and carbon metabolism related products and enzymes. However, ZnPP decreased carotenoids, fructose, starch content and enzyme activities related to starch metabolism. The regulation effect of Hemin on HuangHuaZhan was better than XiangLiangYou 900. These results indicate that Hemin improved the effects of salt stress on the photosynthesis and physiological characteristics of rice leaves as a result of enhanced carbohydrate metabolism. Thus, Hemin could alleviate the damage caused by salt stress to a certain extent.


Assuntos
Oryza , Heme Oxigenase-1 , Hemina , Plântula , Cloreto de Sódio , Clorofila A , Fotossíntese , Carbono , Carotenoides
10.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902252

RESUMO

Spexin2 (SPX2), a paralog of SPX1, is a newly identified gene in non-mammalian vertebrates. Limited studies in fish have evidenced its important role in food intake and energy balance modulation. However, little is known about its biological functions in birds. Using the chicken (c-) as a model, we cloned the full-length cDNA of SPX2 by using RACE-PCR. It is 1189 base pair (bp) in length and predicted to generate a protein of 75 amino acids that contains a 14 amino acids mature peptide. Tissue distribution analysis showed that cSPX2 transcripts were detected in a wide array of tissues, with abundant expression in the pituitary, testis, and adrenal gland. cSPX2 was also observed to be ubiquitously expressed in chicken brain regions, with the highest expression in the hypothalamus. Its expression was significantly upregulated in the hypothalamus after 24 or 36 h of food deprivation, and the feeding behavior of chicks was obviously suppressed after peripheral injection with cSPX2. Mechanistically, further studies evidenced that cSPX2 acts as a satiety factor via upregulating cocaine and amphetamine regulated transcript (CART) and downregulating agouti-related neuropeptide (AGRP) in hypothalamus. Using a pGL4-SRE-luciferase reporter system, cSPX2 was demonstrated to effectively activate a chicken galanin II type receptor (cGALR2), a cGALR2-like receptor (cGALR2L), and a galanin III type receptor (cGALR3), with the highest binding affinity for cGALR2L. Collectively, we firstly identified that cSPX2 serves as a novel appetite monitor in chicken. Our findings will help clarify the physiological functions of SPX2 in birds as well as its functional evolution in vertebrates.


Assuntos
Galinhas , Hipotálamo , Neuropeptídeos , Hormônios Peptídicos , Animais , Masculino , Galinhas/genética , Galinhas/metabolismo , Galanina/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Receptores de Galanina/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo
11.
PLoS One ; 18(3): e0279192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930609

RESUMO

Salt stress, as a principal abiotic stress, harms the growth and metabolism of rice, thus affecting its yield and quality. The tillering stage is the key growth period that controls rice yield. Prohexadione-calcium (Pro-Ca) can increase the lodging resistance of plants by reducing plant height, but its effects on rice leaves and roots at the tillering stage under salt stress are still unclear. This study aimed to evaluate the ability of foliar spraying of Pro-Ca to regulate growth quality at the rice tillering stage under salt stress. The results showed that salt stress reduced the tillering ability of the rice and the antioxidant enzyme activity in the roots. Salt stress also reduced the net photosynthetic rate (Pn), stomatal conductance (Gs) and intercellular CO2 concentration (Ci) of the rice leaves and increased the contents of osmotic regulatory substances in the leaves and roots. The application of exogenous Pro-Ca onto the leaves increased the tiller number of the rice under salt stress and significantly increased the photosynthetic capacity of the leaves. Additionally, it increased the activities of antioxidant enzymes and the AsA content. The contents of an osmotic regulation substance, malondialdehyde (MDA), and H2O2 in the leaves and roots also decreased. These results suggested that Pro-Ca can increase the tillering ability, photosynthetic capacity, osmotic adjustment substance content levels and antioxidant enzyme activity levels in rice and reduce membrane lipid peroxidation, thus improving the salt tolerance of rice at the tillering stage.


Assuntos
Antioxidantes , Oryza , Antioxidantes/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/metabolismo , Estresse Salino , Cálcio da Dieta/metabolismo , Plântula
12.
PeerJ ; 11: e14804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778152

RESUMO

Salt stress affects crop quality and reduces crop yields, and growth regulators enhance salt tolerance of crop plants. In this report, we examined the effects of prohexadione-calcium (Pro-Ca) on improving rice (Oryza sativa L.) growth and tillering under salt stress. We found that NaCl stress inhibited the growth of two rice varieties and increased malondialdehyde (MDA) levels, electrolyte leakage, and the activities of the antioxidant enzymes. Foliar application of Pro-Ca reduced seedling height and increased stem base width and lodging resistance of rice. Further analyses showed that Pro-Ca application reduced MDA content, electrolyte leakage, and membrane damage in rice leaves under NaCl stress. Pro-Ca enhanced the net photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of rice seedlings, while increasing the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid peroxidase (APX) at the tillering stage under salt stress. Overall, Pro-Ca improves salt tolerance of rice seedlings at the tillering stage by enhancing lodging resistance, reducing membrane damages, and enhancing photosynthesis and antioxidant capacities of rice seedlings.


Assuntos
Antioxidantes , Oryza , Antioxidantes/farmacologia , Cloreto de Sódio/farmacologia , Fotossíntese , Peroxidases/metabolismo , Cálcio da Dieta/farmacologia
13.
Gen Comp Endocrinol ; 335: 114232, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36774983

RESUMO

Small integral membrane protein 20 (SMIM20) could generate two main peptides, PNX14 and PNX20, which participate in multiple biological roles such as reproduction, inflammation and energy metabolism in mammals. However, little is known about their physiological functions in non-mammalian vertebrates. Using chicken (c-) as an animal model, we found cSMIM20 was moderately expressed in adipose tissues, and its expression was gradually increased during the differentiation of chicken preadipocytes, suggesting that it may play an important role in chicken adipogenesis. Further research showed cPNX14 could facilitate the differentiation of chicken preadipocytes into mature adipocytes by enhancing expression of adipogenic genes including PPARγ, CEBPα and FABP4, and promoting the formation of lipid droplets. This pro-adipogenic effect of cPNX14 was completely attenuated by Epac-specific and ERK inhibitor. Interestingly, cPNX20 failed to regulate the adipogenic genes and lipid droplet content. Collectively, our findings reveal that cPNX14 but not cPNX20 can serve as a novel adipogenesis mediator by activating the Epac-ERK signaling pathway in chickens.


Assuntos
Adipócitos , Proteínas Aviárias , Galinhas , Proteínas de Membrana , Animais , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Diferenciação Celular , Galinhas/metabolismo , Mamíferos , Transdução de Sinais , Proteínas Aviárias/metabolismo , Proteínas de Membrana/metabolismo
14.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768630

RESUMO

Dysfunctions of the ovaries and adrenal glands are both evidenced to cause aberrant adipose tissue (AT) remodeling and resultant metabolic disorders, but their distinct and common roles are poorly understood. In this study, through biochemical, histological and RNA-seq analyses, we comprehensively explored the mechanisms underpinning subcutaneous (SAT) and visceral adipose tissue (VAT) remodeling, in response to ovariectomy (OVX) versus adrenalectomy (ADX) in female mice. OVX promoted adipocyte differentiation and fat accumulation in both SAT and VAT, by potentiating the Pparg signaling, while ADX universally prevented the cell proliferation and extracellular matrix organization in both SAT and VAT, likely by inactivating the Nr3c1 signaling, thus causing lipoatrophy in females. ADX, but not OVX, exerted great effects on the intrinsic difference between SAT and VAT. Specifically, ADX reversed a large cluster of genes differentially expressed between SAT and VAT, by activating 12 key transcription factors, and thereby caused senescent cell accumulation, massive B cell infiltration and the development of selective inflammatory response in SAT. Commonly, both OVX and ADX enhance circadian rhythmicity in VAT, and impair cell proliferation, neurogenesis, tissue morphogenesis, as well as extracellular matrix organization in SAT, thus causing dysfunction of adipose tissues and concomitant metabolic disorders.


Assuntos
Tecido Adiposo , Adrenalectomia , Camundongos , Feminino , Animais , Humanos , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Adiposidade , Ovariectomia/efeitos adversos , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo
15.
Fish Shellfish Immunol ; 134: 108584, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36740083

RESUMO

Toll-like receptor 18 (TLR18), a non-mammalian TLR, has been believed to play an important role in anti-bacterial immunity of teleost fishes. UNC93B1 is a classical molecular chaperone that mediates TLRs transport from endoplasmic reticulum to the located membrane. However, TLR18-mediated signal transduction mechanism and the regulatory effect of UNC93B1 to TLR18 are still unclear in teleost fishes. In this study, the coding sequences of TLR18 and UNC93B1 were cloned from Schizothorax prenanti, named spTLR18 and spUNC93B1, respectively. The spTLR18 and spUNC93B1 are 2583 bp and 1878 bp in length, encode 860 and 625 amino acids, respectively. The spTLR18 widely expressed in various tissues with the highest expression level in liver. After stimulation of Aeromonas hydrophila, lipopolysaccharide (LPS) and Poly(I:C), the expression levels of spTLR18 were significantly increased in spleen and head kidney. The spTLR18 located in the cell membrane, while spUNC93B1 located in the cytoplasm. Luciferase and overexpression analysis showed that spTLR18 activated NF-κB and type I IFN signal pathways, and spTLR18-mediated NF-κB activation might depend on the adaptor molecule MyD88. Besides, spUNC93B1 positively regulates spTLR18-mediated NF-κB signal. Our study first uncovers TLR18-UNC93B1-mediated signal transduction mechanism, which contributes to the understanding of TLR signaling pathway in teleost fishes.


Assuntos
Cyprinidae , NF-kappa B , Animais , NF-kappa B/metabolismo , Imunidade Inata , Proteínas de Peixes/genética , Filogenia , Receptores Toll-Like/genética , Transdução de Sinais
16.
Poult Sci ; 102(2): 102379, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608454

RESUMO

Stress can suppress reproduction capacity in either wild or domestic animals, but the exact mechanism behind it, especially in terms of steroidogenesis, remains under-investigated so far. Considering the important roles of progesterone in avian breeding, we investigated the modulation of corticosterone on progesterone production in cultured granulosa cells of chicken follicles at different developmental stages. Using enzyme immunoassays, our study showed that corticosterone could only inhibit progesterone synthesis in granulosa cells from F5-6, F4, and F3 follicles, but not F2 and F1 follicles. Coincidentally, both quantitative real-time PCR and western blotting revealed that corticosterone could downregulate steroidogenic acute regulatory protein (StAR) expression, suggesting the importance of StAR in corticosterone-related actions. Using the dual-luciferase reporter system, we found that corticosterone can potentially enhance, rather than inhibit, the activity of StAR promoter. Of note, combining high-throughput transcriptomic analysis and quantitative real-time PCR, phosphodiesterase 10A (PDE10A), protein kinase cAMP-dependent type II regulatory subunit alpha (PRKAR2A) and cAMP responsive element modulator (CREM) were identified to exhibit the differential expression patterns consistent with cAMP blocking in granulosa cells from F5-6, F4, and F3, but not F2 and F1 follicles. Afterward, the expression profiles of these genes in granulosa cells of distinct developmental-stage follicles were examined by quantitative real-time PCR, in which all of them expressed correspondingly with progesterone levels of granulosa cells during development. Collectively, these findings indicate that corticosterone can stage-dependently inhibit progesterone production in granulosa cells of chicken preovulatory follicles, through impeding cAMP-induced StAR activity presumptively.


Assuntos
Galinhas , Progesterona , Animais , Feminino , Células Cultivadas , Galinhas/metabolismo , Corticosterona/metabolismo , Células da Granulosa/metabolismo , Progesterona/metabolismo , AMP Cíclico/metabolismo
17.
PeerJ ; 11: e14673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710858

RESUMO

Prohexadione calcium (Pro-Ca), as a growth retardant, can effectively alleviate the damage of salt stress to plants. In order to explore the effects of NaCl stress on the physiological characteristics and panicle traits of rice plants as well as the alleviating effect of Pro-Ca at the booting stage, we performed pot experiments on two rice cultivars: conventional rice 'Huanghuazhan' and hybrid rice 'Xiangliangyou900'. Rice plants were treated with 0.3% NaCl 48 hours after Pro-Ca (100 mg L-1) treatment to study the effects of Pro-Ca on the physiological characteristics of the leaves and panicles, as well as the panicle and yield traits of rice under salt stress. Our analysis indicated that NaCl treatment inhibited the morphological growth parameters and photosynthetic efficiency, destroyed the antioxidant defense systems of leaves and panicles, increased soluble protein and proline in both rice cultivars. Foliar application of Pro-Ca significantly increased the leaf area, uppermost internode length, panicle length, panicle weight, number of primary branches, number of grains per panicle, seed setting rate and yield under salt stress. Pro-Ca application significantly affected chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and apparent mesophyll conductance (AMC) in NaCl-treated rice cultivars compared with NaCl treatment alone. Moreover, Pro-Ca also increased ascorbic acid (AsA) content, enhanced superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity, and further increased the accumulation of soluble protein and proline in leaves and panicles. These results illustrated that foliar application of Pro-Ca at the booting stage could alleviate the damage caused by NaCl stress by regulating the physiological and metabolic processes of rice plants, thereby enhancing the stress resistance of the plants, increasing total rice yield in salt stress conditions.


Assuntos
Oryza , Cloreto de Sódio/farmacologia , Antioxidantes/farmacologia , Estresse Salino , Cálcio da Dieta/metabolismo , Prolina/farmacologia
18.
J Steroid Biochem Mol Biol ; 226: 106218, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36368625

RESUMO

In vertebrates, the hypothalamus-pituitary-adrenal gland (HPA) axis is the main endocrine pathway regulating the stress response, thus also called the stress axis. It has been well-accepted that the stress axis is tightly controlled by both hypothalamic stimulators and inhibitors [e.g. corticotropin (ACTH)-releasing inhibitory factor (CRIF)]. However, the identity of authentic CRIF remains unclear for decades. Recently, neuropeptide W (NPW) was proved to be the physiological CRIF in chickens. Together with its functional receptor (NPBWR2), they play critical roles in attenuating the activity of the chicken stress axis. Because increasing pieces of evidence suggested that sex steroids could regulate the stress axis, using chicken as a model, we investigated whether the newly identified CRIF and its receptor are under the control of sex steroids in this study. Our results showed that: (1) expression of NPW-NPBWR2 in the hypothalamus-pituitary axis was sexually dimorphic and developmental stage-dependent; (2) progesterone (P4), rather than 17ß-estradiol (E2) and dihydrotestosterone (DHT), could dose- and time-dependently upregulate NPBWR2 expression, which was accompanied with the decrease of ACTH synthesis and secretion, in cultured pituitary cells; (3) intraperitoneal injection of P4 could elevate the mRNA level of pituitary NPBWR2; (4) P4-stimulated NPBWR2 expression was relevant to both nPR-mediated genomic action and mPRs-triggered nongenomic route associated with MEK/ERK, PI3K/AKT cascade, and calcium influx. To our knowledge, our results discover a novel route of sex steroids in modulating the stress axis of chickens, which lays a foundation to reveal the complicated interaction network between reproduction and stress axes in chickens.


Assuntos
Neuropeptídeos , Progesterona , Animais , Progesterona/farmacologia , Progesterona/metabolismo , Galinhas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Sistema Hipotálamo-Hipofisário , Di-Hidrotestosterona/farmacologia , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipófise-Suprarrenal
19.
Poult Sci ; 102(1): 102279, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36402041

RESUMO

Spexin (SPX) is a conservative tetradecapeptide which has been proven to participate in multiple physiological processes, including anxiety, feed intake, and energy metabolism in fish and mammals. However, whether SPX exists and functions in birds remain largely unknown. Using chicken (c-) as a model, the full-length cDNA encoding cSPX precursor was cloned, and it was predicted to generate a mature peptide with 14 amino acids conserved across vertebrates. The pGL4-SRE-luciferase reporter system-based functional analysis demonstrated that cSPX was effective in activating chicken galanin type Ⅱ receptor (cGALR2), cGALR2-like receptor (cGALR2L) and galanin type Ⅲ receptor (cGALR3), thus to stimulate intracellular MAPK/ERK signaling pathway. Quantitative real-time PCR revealed that SPX was widely expressed in chicken tissues, especially abundant in the central nervous system, pituitary, testes, and pancreas. Interestingly, it was noted that chicken hypothalamic SPX mRNA could be up-regulated by 24-h and 36-h fasting, heralding its latent capacity in appetite regulation. In accordance with this speculation, peripheral injection of cSPX was proved to be functional in reducing feed intake of 3-wk-old chicks. Furthermore, we found that cSPX could reduce the expression of AgRP and MCH, with a concurrent rise in CART1 mRNA level in the hypothalamic of chicks. Collectively, our findings not only provide the evidences that SPX can act as a satiety factor by orchestrating the expression of key feeding regulators in the chicken hypothalamus but also help to facilitate a better understanding of its functional evolution across vertebrates.


Assuntos
Galinhas , Galanina , Animais , Galinhas/genética , Galinhas/metabolismo , Galanina/genética , Galanina/metabolismo , Regulação do Apetite , Clonagem Molecular , Mamíferos/genética , RNA Mensageiro/metabolismo
20.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233045

RESUMO

A follicle stimulating hormone (FSH) is widely used in the assisted reproduction and a synthetic peptide corresponding to a receptor binding region of the human (h) FSH-ß-(34−37) (TRDL) modulated reproduction. Furthermore, a 13-amino acid sequence corresponding to hFSH-ß-(37−49) (LVYKDPARPKIQK) was recently identified as the receptor binding site. We hypothesized that the synthetic peptides corresponding to hFSH-ß-(37−49) and hFSH-ß-(34−49), created by merging hFSH-ß-(34−37) and hFSH-ß-(37−49), modulate the reproductive functions, with the longer peptide being more biologically active. In male or female prepubertal mice, a single injection of 200 µg/g BW ip of hFSH-ß-(37−49) or hFSH-ß-(34−49) hastened (p < 0.05) puberty, whereas the same treatments given daily for 4 d promoted (p < 0.05) the gonadal steroidogenesis and gamete formation. In addition of either peptide to the in vitro cell cultures, promoted (p < 0.05) the proliferation of primary murine granulosa cells and the estradiol production by upregulating the expression of Ccnd2 and Cyp19a1, respectively. In adult female mice, 200 µg/g BW ip of either peptide during diestrus antagonized the FSH-stimulated estradiol increase and uterine weight gain during proestrus. Furthermore, hFSH-ß-(34−49) was a more potent (p < 0.05) reproductive modulator than hFSH-ß-(37−49), both in vivo and in vitro. We concluded that hFSH-ß-(37−49) and especially hFSH-ß-(34−49), have the potential for reproductive modulation.


Assuntos
Hormônio Foliculoestimulante Humano , Subunidade beta do Hormônio Folículoestimulante , Animais , Estradiol , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Masculino , Camundongos , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA